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This is a study of the plane or axisymmetrical hypersonic flow of an ideal 
gas in an expanding nozzle whose wall approximates a parabola of degree R . 
The possibility of attainment of arbitrarily large Mach numbers in this flow 
~s studied on the basis of the general equations of hypersonic flows derived 
in [I and 2]. The necessary conditions to be fulfilled by k in order for 
isentropic expansion up to M - ® to be attainable in the nozzle are deter- 
mined. If these conditions are violated, Isentropic flow breaks down. Exam- 
ples of self-slmilar solutions to illustrate the possible cases of flow are 
constructed with the aid of results obtained in [3 and 4]. 

I. Let us consider the plane or axisymmetrical isentropic hypersonic flow 

of an ideal perfect gas in an expanding nozzle the equation of whose surface 

may be written as 

y = cx  k ( t  Jr  A (x)), l im A (x) = 0 (1.I)  

where e and ~ are positive constants, the Cartesian (cylindrical) coo;- 

dinates x, y are expressed in fractions of some characteristic length, and 

the x-axls in the axisymmetrical flow is the axls of symmetry. Starting at 

some cross section, the flow may be considered hypersonic, since the M n~m- 

ber increases without limit with increasing x • In investigating the flow, 

we make use of the general equations of hypersonic flows [i and 2] which in 

the case of plane or axlsymmetrical isentroplc flow are of the form 

i 0 In ~ O0 An 0 O0 O~ 

o 0_2_0 o 
0--7 = c o s  Ox + s i n  0 a-y- " sinO O O o  O - - i f = - -  0 ¥  - F c ° s  Oy 

(1.2) 

where y is the adiabatic exponent, 8 is the slope suIElebetween the velo- 

c~y vector and the x-axis, ~ = I, 2 for plane and axisymmetrlcal flows, 

respectively, and ~ is a small quantity related to the local Mach number 

M by Expression 
M = I f 2  ( i  - -  ~ )  [ (T  - -  i )  ~ (2 - -  ~ ) l  - ' / '  ( i . 3 )  

As was shown in [i and 2], the properties of arbitrary hypersonic flows 
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depend on the value of the single parameter K --=M~, where /~ and 

are the Mach number and slope angle of the velocity vector, respectively. 

2. Let us trace the variation of parameter K in the flow in question. 

For k ~ ~ the parameter K clearly goes to infinity, since ~ ~ ~ and 

M ~ ® as x increases. In this case, the conclusion drawn in [I and 2] 

concerning the appearance of infinite domains of definition of the solution 

is valid. The equations given in I1 and 2] have a simple asymptotic solution 

of the source type; the source intensity changes in going from one flow llne 

to another, For k > I, vacuum pockets may appear 

near the walls. It can be shown easily tha% the 

Y 7  / 7 ~ ~  boundary l of flow with a vacuum will be a 
/ /  straight line (Fig.l). 

Let us ~ee how the parameter K changes for 

k < 1 . From the equation of continuity written 

. . . . .  in integral form we have 

y (x) 
F i g .  1 f puyV-ldy = c o n s t  ( 2 . t )  

o 

where u and p are the ax4-] velocity and density, respectively; the Integral is taken 

over the nozzle cross section for a fixed x . As x tends to infinity, u 

tends to the maximum rate of gas escape into the vacuum U, Assuming that 

no vacuum pockets form in the channel, we use Equation (2.1) to obtain the 

law of variation of the average dendity p. over the cross section. Then, 

knowing p. , we apply the Isentropicity equations to find the law of varla ~ 

$ion of the remaining flow parameters -- the pressure p. , the velocity of 

sound a. , and the Mach number M. corresponding to the given value of 0. 

p ,  ~ x -vk, p ,  ~ x - ~ ,  a ,  ~ x - ' ~ (~ -~ ) ,  M ,  ~ x '~k(Y-1) (2.2) 

As the characteristic anal6 ~ of the given cross section we can take 

the slope angle between the channel wall and thex-axisatthat cross section 

--= t~ - ,  ( d y  / d x )  . ~  x ~ 1  (2.3) 
Hence, we have 

K = M , @ ~ x  m, m = k _ _ _  t ,  n = 1 ( 2 . 4 )  
n I +a/2v(T--l) 

for a p a r a m e t e r  K which determines the flow. 

The following three cases are possible: 

t > k > n ,  k -  n ,  n > k > O  (2.5)  

~. For 1 > k > n , the parameter g defined by Expression (2.4) 

increases without limit. It is easy to show that if Isentroplc flow is 

assumed, the product Me calculated form values at the wall also increases 

without limit with increasing x . Assuming the opposite, i.e. that the 

quantity ~ at the wall is bounded everywhere and that the flow is isen- 

tropic, we can solve the Cauchy problem and find the flow everywhere in the 

channel an the basis of the given values of the flow parameters at the wall. 
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As in the case of flow around a slender body, Me is a bounded quantity o~ 

order of magnitude one. The quantity K~-M,~, turns out to be bounded in 

exactly the same way, which contradicts our premise. 

Let us now show that shock_less flow in the nozzle is impossible In the 

case being considered. Once again we assume the opposite: let isentroplc 

x 5 

Fig. 2 

flow take place in the nozzle up to 

x = ~ We choose a cross section AB 

(Fig.2) such that the parameSer M8 

Is sufficiently large everywhere. Let 

us extend the second-family character- 

istic AC from the point A . Accord- 

ing to [I and 2], this characteristic 

goes to infinity without intersecting 

the x-axls forming a constant angle 0' 

with the x-axis at infinity. The angle 

0 '  is given by the expression (Equation (6.1) of [2]). 

2 
0' : ~ (~ - 1) ~ ~I~ (3. l )  

w h e r e  ~ a  and  M a a r e  t h e  s l o p e  a n g l e  b e t w e e n  t h e  w a l l  and t h e  x - a x i s  and 

t h e  blach number  a t  t h e  p o i n t  A , r e s p e c t i v e l y .  

The quantity O' is indeed greater than zero, since by virtue of the 

unlimited increase of K it is always possible to find an x such that the 

second term in the right side of (3.1) is less than the first. The charac- 

teristic AC therefore inevitably intersects the channel wall, and since 

the angle between it and the x-axls tends to zero, shock waves arise in the 

stream. Ha~ing assumed the flow to be isentropic, we have arrived at a con- 

tradiction, which proves that shockless flow in this case is impossible. 

~. For k = n , the parameter K as x - ® remains a finite quantity 
of order of magnitude one. Recalling that the angle of slope $ of the 
nozzle wall tends to zero with increasing x , we can take 

c o s 0 ~ - - _ l ,  s i n 0 ~ 0 ,  a , 0  ~ 0 0  0 _ 0 (4.1) 
os  Ox Oy ' o~  - -  b~ 

in Equation (1.2) with a relative error of 0 ~ , whereupon Equations(1.2) 
are transformed [1 and 2] into a system of equations of unsteady Isentroplc 
flow in accordance with the theory of small perturbations of hypersonic 
flows [5 and 6], 

t ~ o l n ~ + o ~ l n ~  / oo o OO+oOO o~ 
T - -  1 \ - O x - - x  - - ~ y .  ] + ~ + (v - -  t )  --y = O, Ox Oy + Oy = 0 (4.2) 

Equations (4.2) coincide with the equations of one-dimensional unsteady 
flow if we interpret ~, 0, x, y as the elasticity, velocity, time, and 
coordinate, respectively If the nozzle wall is represented by Equation 

- ox" (A{x) In Equatlon (I.i) is set identically equal to zero), then 
Equations (4.2) admit of a simple self-similar solution belonging to the 
class of solutions of the problem of fixed gas mass scattering obtained by 
Sedov [3]. This class of solutions was used by Nikol'skil [4] for construc- 
ting Isentropic flows in nozzles and exit cones. In the special case of 
self-slmilar isentropic motion, the solutlen has the simple form 

O ~  n Y--- ~ - -  0"5n ( i  - -  n) k 2 +  ~ ~ - -  Y (4.3)  
x ' x(~-l)  vn ~ x r~ 
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where a is an arbitrary positive constant, and n is given by Equation 
(2.4). It is easy to see that the stagnation condition e - du/dx is ful- 
filled at the wall y - ox ~ . As was noted in [4], the dlstrib~tion of flow 
parameters over the nozzle cross section remains nonuniform all the way to 
infinity, i.e. the case at hand does indeed fit within the framework of the 
conventional theory of small perturbations of hypersonic flow. 

~, For n > k > 0 , the parameter K tends to zero with increasing x . 
As was shown in Ill, the ratio of the second term in the second equation of 
(i.2) to the first term is equal in orde~ of magnitude to K -s , i.e. as K- 0 
we arrive at the equation ~%/~n- O, or ~/~y= 0 for the case of elongated 
nozzles. Thls means that in the present instance it is justifiable to apply 
to the nozzle the hydraulic approximation wherein the enthalpy, pressure and 
density are uniform over the cross section. Taking into account flow rate 
equation (2.1) and the isentroplc character of the flow, we obtain the asymp. 
totlc expressions 

p : p ,  p : =  p ,  ~ r  ~ : q .  ( 5"1 ) 

for p, p and ~ , where the quantities with subscript . denote some fixed 
values. 

~, I~j way of example, let us consider the self-similar solutions [3 and 
7] cf Isentroplc flow equations (4.2). We attempt to find a solution of the 
form 

y: 
0 : Y-- V (~), ~ = z (Z), ~ : -  y ( 6 . t )  

z (7 --  1) z 2 x~ 

We o b t a i n  t h e  s y s t e m  o f  equations 

dz 
dV 

2z [z - -  0 ,5  (T - -  i )  V ( t  - -  V) + (V - -  F )  ( i  - -  V~ n)l 
v ( l  - -  V) ( v - - ~ )  - -  ~z ( z - -  v)  

d l n ~ , _  ( V - - 9 ) 2 - - z  
dv v (i -- v) (v -- F) -- w (z -- v) 

/ :  2 ( i  - - ~ )  (6.2) 
v ( ' r - -  t) 

(6.3) 

half-plane E > O . The arrows 
point in the dlrction of increasing 
X . The points 0 (z = O, V = O) ; 

B I !  " 0 . 5 ( Y  -- ~ ) n ( 1 - - n ) ,  V = n )  ; 
P = O, V = i)are nodes, the points 
A = O, V = ~ ) a n d  C (z  = = ,  V = ~ )  
a r e  s a d d l e  p o i n t s .  F o r  v = t we 
have the additional saddle point 

E (z -- ~2 (T - -  I)' ( 3 - - T )  -2 
V : :  2~ (3 - -  1") -x) 

For v == 2 and | > [~ > IX,l, where 

7 2 _ 3 7 +  4 +  ] / 2 ( 7 - - I )  '/' 
t t * ' :  2 (3 ":+ - -  27 + 2) 

(6.4) 

there arise two other singular 
points that coincide with :the p ~  

~o~ and G, where the curves of slope zero(== =o(F)) and Infln~ (=*=.(F)) 
Equation (6.2) intersect 

z --  z° (V) ----- T - -  i V (i - -  V) - -  (V --~*) ( I- 

V (t -- V) W -- rO (6.5) 
= ~oo~)  = v ( t  - -  V) 

C 

Fig. 3 

Let us consider in detail the case 0 < I < ~ (the meaning of the parame- 
ter Z will become clear below). The condi~lon ~ < ~ , it is easy to show, 
implies that I < n < u • Fig. 3 shows the pattern of integral curves of 

Equation (6.2) for ~ - 2 in the 



Hypersonic flows in nozzles 109 

The coordinates of the points of intersection are 

V,,~ = ( T - -  1) -~ {V~ (3 - -  ~) + ~ (T - -  2 ) +  

+" 1/-1/4 (~ - -  3) 2 ~ [7/4 +- (~ - -  a/2)~l + t ~ [ (? - -  1 ) ~ +  t l }  ( 6 . 6 )  

zl,~ = (Vu2 - -  ~)~ 

where the subscripts 1 and 2 refer to the points G~ and G2, respectively. 

For ~ = ~.l, the curves z - zo(V) and z = z®(V) have a point of tan- 
gency with the coordinates 

I + (T - -  2) 2 -V~ (T - -  t )  '/~ z = (V~,2 - - ~ , 1 )  2 (6.7) 
V I = V 2 =  ~ 2 _ 2 ~ +  2 ' 

We note that the point of tangency appears to the left of the point B 
for y < 2 and to the right of point B for y > 2 (Fig.3 corresponds to 
the case ~ < U. when the points Vi.a, zl.a, are lacking). For ~ < W.l,the 
point R clearly lles above the curve z = ~V -- u)2, while for U > U.~ it 
may turn out to lie below this curve. The curve ~ - (V -- U)~ corresponds 
to a limiting llne in the physical plane, since the direction of change of 
k is reversed in passing over it [3 and 8]. The limitin~ llne, in addition 
to the point A , where it intersects the curve z = z~{V), for ~ = 1 also 
passes through the point E (z = U2(y _ 1)2 (3 -- V)-~, V = 2U(3 -- y)-l), and 
for ~ = 2 - through the points G~, Ga (Equation (6.6)) if these are pre- 
sent. The required integral curve passes through the saddle point C , in 
whose neighborhood it can be represented as 

V ~ ~ - 7 ,  a i  ao  = l ,  a l  = l (1  - -  l )  ( ~  ~ l)  , . .  • ( 6 . 8 )  
i=o  z~ 2 -5 v 

From Equation (6.3), taking into account (6,8), we find that 

~ ~ [ t - -  ( l - -~)~+ b l - - ~ - -  al~ . . . ]  (6.9) 
V? L 2~ ] 

a = I + ~ / ~ ( v - -  t )  ( T - -  1), b = I + ~ +  ~ / ~ ( ~ v - -  1) ( T - -  1) 

where q is an integration constant. Making use of Equations (6.1), (6.8) 
and (6.9), we obtain ( 6 . 1 ~  

O :  l ! ( t  + ~ - ~ k  ~ + .  . .), ~ -- q~ (1 + 6 ~  ~ + 6 ~ +  . . . )  
x (T -- t )  x ~ (~-~) 

where the constants ~ and 6, are expressed in terms of the constant q 

2~ 

C x 

Fig. 4 

The limits of variation of V 
allows us to establish the inequality 

y (x) < Nz ~ 

and the coefficients of expansion of 
Equations (6.8) and (6.9). For v - 1 
(or for v = 2 and ~ < ~*i), a solution 
of (6.8), (6.9) and (5.10) constructed in 
the neighborhood of the point C can be 
extended to the singular point B that 
lles above the cUrve z - (V -- ~)a as 
shown in Flg.3. In physical coordinates 
the value X = - corresponds to this 
singular point. Let us take some point 
A in the xy-plane (Fig.~) and pass 
through it the streamline whose equation 
is 

dY~Y---V ( l < V < n )  ( 6 . i i )  
dx 

a r e  a p p a r e n t  f r o m  F i g . 3 .  E q u a t i o n  ( 6 . 1 1 )  

(6 . t2 )  
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for the streamline y = y(m), where n is some constant. The quantity 
=- yx-~IVz n-~ therefore tends to zero with Increasing x in the region 

of flow between the streamline AR and the x-axis (Fig.~), since we are 
considering the case where ~ > ~ . To find the equation of the streamline, 
we make use of the first equation of (6.10), 

~ =:: l y (1 ~ ~2k 2 -~ e4~ 4 4 = .} y C,' '( [1 ~" ~2X 2 ([--t~)~-~4 x4 ([-~)-A. dx x . . . . . .  , .,.] (6.13) 

where c is an integration constant, and a~ are constants that depend on 
w~ and c • Since by hypothesis Z < u , the second equation of (6.13) can 
be written in the form (I.I), where we set Z = k , and 

A(x) = a~x ~(k'-~) ~ - ~ x  4(~-~) -F • • . ,  l i m A ( x )  =- 0 (6.:14) 

Extending the characteristic of the first family AC (Fig.4) through the 
point A and solving the Goursat problem in the characteristic triangle 
A OD , the solution thus constructed can be "sewn" to an~ solution for Isen- 
tropic flow in channel DE • 6~ is the characteristic of the second family 
for flow in the channel. The second equation of (6.10) can be written as 

q~ 

B =  (7 - -  1) x ~k(v-1) [1 @ 6 (x, y)],  x--,~lim 8 (x, y) = 0 (6.15) 

by taking into account Expression (6.2) for Z • 

O A D v 

Fig. 5 

Comparing the last equation of 
(5.1) wlth(6.15), we fifid confirma- 
tion of Section 5 in that the flow 
under consideration obeys the laws 
of hydraulics. 

If the point B lles below the 
curve z ffi (V -- ~)a (this is possible 
for ~ = 2 and W > ~.~), an integral 
curve extended from the point C 
passes through the node G~ with coor- 
dinates (6.6) and may then intersect 
the curve z = (V -- ~)s. In this case 
a limiting line k = k, appears in the 
flow region (Fig.4). It is clear that 
if the point A is chosen in the 
region k < k., a streamline extended 

through the point A does not intersect the limiting llne with increasing x. 

7. For ~" ~ =n Equations (6.2) and (6.3) have the simple solution V=n , 
Z" 0.5(7--1)n(l--n), which is a special case of solution (4.3). 

8. The pattern of integral curves for i> l> ~> ~ and v ffi 1 (or for 
= 2 and ~> ~.a) is shown in Fig.5. 

Here T 2- 3T-~ 4 -- ~2 (T -- 1) ~/~ 
~ .2  = 2 (T 2 -- 2y -~ 2) (8.1) 

As before, the required integral curve connects the points C (& = ®, V=L) 
and B (I = 0.5(¥--1)n(1--~), F--~). The point R corresponds to k =® in 
the physical plane. It is easy to show that the parameter k increases 
without limit with increasing x along the streamline extanded from any 
point A in the xy-plane. For this reason, the as~ptotlc representation 
of the streamline equation obtained by integration .v~6.11), recalling that 
V ~ n as k - ~ , may be written in the form 

y =  cx n ( i  ~ A (x)),  l ira ~ (x) ::  0 (8 .2)  

where o Is some constant, The flow we are considering, as in Section Z 
belongs to the class of flows considered in Section 4. The nonuniform dis- 
trlbution of flow parameters over the nozzle cross section continues all the 
way out to infinity without any disruption of potential flow. 
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If the point B lies below the parabola & - (V-- ~)=, as ~y happen for 
- 2 and ~< ~,=, an integral curve extended from the point C passes 

through the node G, with coordinates (6.6). It can be shown that the point 
G, corresponds to a characteristic of the second family in the physical 
plane, so that weak discontinuities of the flow parameters 
~y occur on it. Hence, an integral curve entering the 
node Gl from above can be extended by arty integral curve z~ I /C ,t ° 
emerging from that node. As shown in Fig.b, integralcuawes I / _/ 
of three types are possible: z,, #= and zs ~Zo a n d  z® / ,l / 
are given by Equation (6.5)). The curve Zz passes t~trough I/ / 
the point B, which in this case happens to be a saddle // / /~,~ 
point. The asy~totic representa ~ ~ ~///LL~'~ 
tion of the streamline is of the ~'- $ 
form (8.2) as before. The curve . //~ 
Zs entering the node D ~," O,V- I) / Z , ~ /  
describes a flow that turns into ~ / ~tx~I/ 
inertial scattering of the gas for ----" //// 

= ® . The curve n~ corresponds ///~ 
to flow in whlch any streamline /'/ /~ 
~F in Fig.3) with increasing x //z~ /7k~ 
inevitably intersects the limiting /5/ / -J ~D Fi 6 
line with resulting disruption of 8 ~//// g" 
flow. Thes e examples confirm the --~---~- 
conclusion drawn in Section.3 as / 
regards the impossibility of shock- 
less fl~. in a nozzle with generator (i.I) for 1 > k > n . 

9. For Z " 1 , Equations (6.2) and (6.3) have the simple solution V- I, 
z = 0 corresponding to inertial scattering of the gas particles. For ~> i, 
the streamlines inevitably intersect the limltir~ line and the flow is dis- 
rupted. For this reason, the stream cannot be accelerated up to M - = more 
rapidly than in the case of a hypersonic source; this is in accord with the 
resultsof Section 2. The illustrations given here therefore confirm the 
conclusions of Sections 2 to 5 about the construction of isentroplc flow in 
an expanding nozzle. 

We note that for large numbers M , a thick boundary layer usually arises 
in nozzles; this layer tends to squeeze out flow in the isentropic core of 
the stream. In the present paper we have indicated what the law of expan- 
sion of the potential core must be in order for shock waves not to arise in 
the nozzle. 
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